ECharts 数据集(dataset)
ECharts 使用 dataset 管理数据。
dataset 组件用于单独的数据集声明,从而数据可以单独管理,被多个组件复用,并且可以基于数据指定数据到视觉的映射。
下面是一个最简单的 dataset 的例子:
实例
legend: {},
tooltip: {},
dataset: {
// 提供一份数据。
source: [
[&qpos;product&qpos;, &qpos;2015&qpos;, &qpos;2016&qpos;, &qpos;2017&qpos;],
[&qpos;Matcha Latte&qpos;, 43.3, 85.8, 93.7],
[&qpos;Milk Tea&qpos;, 83.1, 73.4, 55.1],
[&qpos;Cheese Cocoa&qpos;, 86.4, 65.2, 82.5],
[&qpos;Walnut Brownie&qpos;, 72.4, 53.9, 39.1]
]
},
// 声明一个 X 轴,类目轴(category)。默认情况下,类目轴对应到 dataset 第一列。
xAxis: {type: &qpos;category&qpos;},
// 声明一个 Y 轴,数值轴。
yAxis: {},
// 声明多个 bar 系列,默认情况下,每个系列会自动对应到 dataset 的每一列。
series: [
{type: &qpos;bar&qpos;},
{type: &qpos;bar&qpos;},
{type: &qpos;bar&qpos;}
]
}
尝试一下 »
或者也可以使用常见的对象数组的格式:
实例
legend: {},
tooltip: {},
dataset: {
// 这里指定了维度名的顺序,从而可以利用默认的维度到坐标轴的映射。
// 如果不指定 dimensions,也可以通过指定 series.encode 完成映射,参见后文。
dimensions: [&qpos;product&qpos;, &qpos;2015&qpos;, &qpos;2016&qpos;, &qpos;2017&qpos;],
source: [
{product: &qpos;Matcha Latte&qpos;, &qpos;2015&qpos;: 43.3, &qpos;2016&qpos;: 85.8, &qpos;2017&qpos;: 93.7},
{product: &qpos;Milk Tea&qpos;, &qpos;2015&qpos;: 83.1, &qpos;2016&qpos;: 73.4, &qpos;2017&qpos;: 55.1},
{product: &qpos;Cheese Cocoa&qpos;, &qpos;2015&qpos;: 86.4, &qpos;2016&qpos;: 65.2, &qpos;2017&qpos;: 82.5},
{product: &qpos;Walnut Brownie&qpos;, &qpos;2015&qpos;: 72.4, &qpos;2016&qpos;: 53.9, &qpos;2017&qpos;: 39.1}
]
},
xAxis: {type: &qpos;category&qpos;},
yAxis: {},
series: [
{type: &qpos;bar&qpos;},
{type: &qpos;bar&qpos;},
{type: &qpos;bar&qpos;}
]
};
尝试一下 »
数据到图形的映射
我们可以在配置项中将数据映射到图形中。
我们可以使用 series.seriesLayoutBy 属性来配置 dataset 是列(column)还是行(row)映射为图形系列(series),默认是按照列(column)来映射。
以下实例我们将通过 seriesLayoutBy 属性来配置数据是使用列显示还是按行显示。
实例
legend: {},
tooltip: {},
dataset: {
source: [
[&qpos;product&qpos;, &qpos;2012&qpos;, &qpos;2013&qpos;, &qpos;2014&qpos;, &qpos;2015&qpos;],
[&qpos;Matcha Latte&qpos;, 41.1, 30.4, 65.1, 53.3],
[&qpos;Milk Tea&qpos;, 86.5, 92.1, 85.7, 83.1],
[&qpos;Cheese Cocoa&qpos;, 24.1, 67.2, 79.5, 86.4]
]
},
xAxis: [
{type: &qpos;category&qpos;, gridIndex: 0},
{type: &qpos;category&qpos;, gridIndex: 1}
],
yAxis: [
{gridIndex: 0},
{gridIndex: 1}
],
grid: [
{bottom: &qpos;55%&qpos;},
{top: &qpos;55%&qpos;}
],
series: [
// 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行。
{type: &qpos;bar&qpos;, seriesLayoutBy: &qpos;row&qpos;},
{type: &qpos;bar&qpos;, seriesLayoutBy: &qpos;row&qpos;},
{type: &qpos;bar&qpos;, seriesLayoutBy: &qpos;row&qpos;},
// 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列。
{type: &qpos;bar&qpos;, xAxisIndex: 1, yAxisIndex: 1},
{type: &qpos;bar&qpos;, xAxisIndex: 1, yAxisIndex: 1},
{type: &qpos;bar&qpos;, xAxisIndex: 1, yAxisIndex: 1},
{type: &qpos;bar&qpos;, xAxisIndex: 1, yAxisIndex: 1}
]
}
尝试一下 »
常用图表所描述的数据大部分是"二维表"结构,我们可以使用 series.encode 属性将对应的数据映射到坐标轴(如 X、Y 轴):
实例
dataset: {
source: [
[&qpos;score&qpos;, &qpos;amount&qpos;, &qpos;product&qpos;],
[89.3, 58212, &qpos;Matcha Latte&qpos;],
[57.1, 78254, &qpos;Milk Tea&qpos;],
[74.4, 41032, &qpos;Cheese Cocoa&qpos;],
[50.1, 12755, &qpos;Cheese Brownie&qpos;],
[89.7, 20145, &qpos;Matcha Cocoa&qpos;],
[68.1, 79146, &qpos;Tea&qpos;],
[19.6, 91852, &qpos;Orange Juice&qpos;],
[10.6, 101852, &qpos;Lemon Juice&qpos;],
[32.7, 20112, &qpos;Walnut Brownie&qpos;]
]
},
grid: {containLabel: true},
xAxis: {},
yAxis: {type: &qpos;category&qpos;},
series: [
{
type: &qpos;bar&qpos;,
encode: {
// 将 "amount" 列映射到 X 轴。
x: &qpos;amount&qpos;,
// 将 "product" 列映射到 Y 轴。
y: &qpos;product&qpos;
}
}
]
};
尝试一下 »
encode 声明的基本结构如下,其中冒号左边是坐标系、标签等特定名称,如 &qpos;x&qpos;, &qpos;y&qpos;, &qpos;tooltip&qpos; 等,冒号右边是数据中的维度名(string 格式)或者维度的序号(number 格式,从 0 开始计数),可以指定一个或多个维度(使用数组)。通常情况下,下面各种信息不需要所有的都写,按需写即可。
下面是 encode 支持的属性:
// 在任何坐标系和系列中,都支持: encode: { // 使用 “名为 product 的维度” 和 “名为 score 的维度” 的值在 tooltip 中显示 tooltip: [&qpos;product&qpos;, &qpos;score&qpos;] // 使用 “维度 1” 和 “维度 3” 的维度名连起来作为系列名。(有时候名字比较长,这可以避免在 series.name 重复输入这些名字) seriesName: [1, 3], // 表示使用 “维度2” 中的值作为 id。这在使用 setOption 动态更新数据时有用处,可以使新老数据用 id 对应起来,从而能够产生合适的数据更新动画。 itemId: 2, // 指定数据项的名称使用 “维度3” 在饼图等图表中有用,可以使这个名字显示在图例(legend)中。 itemName: 3 } // 直角坐标系(grid/cartesian)特有的属性: encode: { // 把 “维度1”、“维度5”、“名为 score 的维度” 映射到 X 轴: x: [1, 5, &qpos;score&qpos;], // 把“维度0”映射到 Y 轴。 y: 0 } // 单轴(singleAxis)特有的属性: encode: { single: 3 } // 极坐标系(polar)特有的属性: encode: { radius: 3, angle: 2 } // 地理坐标系(geo)特有的属性: encode: { lng: 3, lat: 2 } // 对于一些没有坐标系的图表,例如饼图、漏斗图等,可以是: encode: { value: 3 }
更多 encode 实例:
实例
var sizeValue = &qpos;57%&qpos;;
var symbolSize = 2.5;
option = {
legend: {},
tooltip: {},
toolbox: {
left: &qpos;center&qpos;,
feature: {
dataZoom: {}
}
},
grid: [
{right: sizeValue, bottom: sizeValue},
{left: sizeValue, bottom: sizeValue},
{right: sizeValue, top: sizeValue},
{left: sizeValue, top: sizeValue}
],
xAxis: [
{type: &qpos;value&qpos;, gridIndex: 0, name: &qpos;Income&qpos;, axisLabel: {rotate: 50, interval: 0}},
{type: &qpos;category&qpos;, gridIndex: 1, name: &qpos;Country&qpos;, boundaryGap: false, axisLabel: {rotate: 50, interval: 0}},
{type: &qpos;value&qpos;, gridIndex: 2, name: &qpos;Income&qpos;, axisLabel: {rotate: 50, interval: 0}},
{type: &qpos;value&qpos;, gridIndex: 3, name: &qpos;Life Expectancy&qpos;, axisLabel: {rotate: 50, interval: 0}}
],
yAxis: [
{type: &qpos;value&qpos;, gridIndex: 0, name: &qpos;Life Expectancy&qpos;},
{type: &qpos;value&qpos;, gridIndex: 1, name: &qpos;Income&qpos;},
{type: &qpos;value&qpos;, gridIndex: 2, name: &qpos;Population&qpos;},
{type: &qpos;value&qpos;, gridIndex: 3, name: &qpos;Population&qpos;}
],
dataset: {
dimensions: [
&qpos;Income&qpos;,
&qpos;Life Expectancy&qpos;,
&qpos;Population&qpos;,
&qpos;Country&qpos;,
{name: &qpos;Year&qpos;, type: &qpos;ordinal&qpos;}
],
source: data
},
series: [
{
type: &qpos;scatter&qpos;,
symbolSize: symbolSize,
xAxisIndex: 0,
yAxisIndex: 0,
encode: {
x: &qpos;Income&qpos;,
y: &qpos;Life Expectancy&qpos;,
tooltip: [0, 1, 2, 3, 4]
}
},
{
type: &qpos;scatter&qpos;,
symbolSize: symbolSize,
xAxisIndex: 1,
yAxisIndex: 1,
encode: {
x: &qpos;Country&qpos;,
y: &qpos;Income&qpos;,
tooltip: [0, 1, 2, 3, 4]
}
},
{
type: &qpos;scatter&qpos;,
symbolSize: symbolSize,
xAxisIndex: 2,
yAxisIndex: 2,
encode: {
x: &qpos;Income&qpos;,
y: &qpos;Population&qpos;,
tooltip: [0, 1, 2, 3, 4]
}
},
{
type: &qpos;scatter&qpos;,
symbolSize: symbolSize,
xAxisIndex: 3,
yAxisIndex: 3,
encode: {
x: &qpos;Life Expectancy&qpos;,
y: &qpos;Population&qpos;,
tooltip: [0, 1, 2, 3, 4]
}
}
]
};
myChart.setOption(option);
});
尝试一下 »
视觉通道(颜色、尺寸等)的映射
我们可以使用 visualMap 组件进行视觉通道的映射。
视觉元素可以是:
- symbol: 图元的图形类别。
- symbolSize: 图元的大小。
- color: 图元的颜色。
- colorAlpha: 图元的颜色的透明度。
- opacity: 图元以及其附属物(如文字标签)的透明度。
- colorLightness: 颜色的明暗度。
- colorSaturation: 颜色的饱和度。
- colorHue: 颜色的色调。
visualMap 组件可以定义多个,从而可以同时对数据中的多个维度进行视觉映射。
实例
dataset: {
source: [
[&qpos;score&qpos;, &qpos;amount&qpos;, &qpos;product&qpos;],
[89.3, 58212, &qpos;Matcha Latte&qpos;],
[57.1, 78254, &qpos;Milk Tea&qpos;],
[74.4, 41032, &qpos;Cheese Cocoa&qpos;],
[50.1, 12755, &qpos;Cheese Brownie&qpos;],
[89.7, 20145, &qpos;Matcha Cocoa&qpos;],
[68.1, 79146, &qpos;Tea&qpos;],
[19.6, 91852, &qpos;Orange Juice&qpos;],
[10.6, 101852, &qpos;Lemon Juice&qpos;],
[32.7, 20112, &qpos;Walnut Brownie&qpos;]
]
},
grid: {containLabel: true},
xAxis: {name: &qpos;amount&qpos;},
yAxis: {type: &qpos;category&qpos;},
visualMap: {
orient: &qpos;horizontal&qpos;,
left: &qpos;center&qpos;,
min: 10,
max: 100,
text: [&qpos;High Score&qpos;, &qpos;Low Score&qpos;],
// Map the score column to color
dimension: 0,
inRange: {
color: [&qpos;#D7DA8B&qpos;, &qpos;#E15457&qpos;]
}
},
series: [
{
type: &qpos;bar&qpos;,
encode: {
// Map the "amount" column to X axis.
x: &qpos;amount&qpos;,
// Map the "product" column to Y axis
y: &qpos;product&qpos;
}
}
]
};
尝试一下 »
交互联动
以下实例多个图表共享一个 dataset,并带有联动交互:
实例
option = {
legend: {},
tooltip: {
trigger: &qpos;axis&qpos;,
showContent: false
},
dataset: {
source: [
[&qpos;product&qpos;, &qpos;2012&qpos;, &qpos;2013&qpos;, &qpos;2014&qpos;, &qpos;2015&qpos;, &qpos;2016&qpos;, &qpos;2017&qpos;],
[&qpos;Matcha Latte&qpos;, 41.1, 30.4, 65.1, 53.3, 83.8, 98.7],
[&qpos;Milk Tea&qpos;, 86.5, 92.1, 85.7, 83.1, 73.4, 55.1],
[&qpos;Cheese Cocoa&qpos;, 24.1, 67.2, 79.5, 86.4, 65.2, 82.5],
[&qpos;Walnut Brownie&qpos;, 55.2, 67.1, 69.2, 72.4, 53.9, 39.1]
]
},
xAxis: {type: &qpos;category&qpos;},
yAxis: {gridIndex: 0},
grid: {top: &qpos;55%&qpos;},
series: [
{type: &qpos;line&qpos;, smooth: true, seriesLayoutBy: &qpos;row&qpos;},
{type: &qpos;line&qpos;, smooth: true, seriesLayoutBy: &qpos;row&qpos;},
{type: &qpos;line&qpos;, smooth: true, seriesLayoutBy: &qpos;row&qpos;},
{type: &qpos;line&qpos;, smooth: true, seriesLayoutBy: &qpos;row&qpos;},
{
type: &qpos;pie&qpos;,
id: &qpos;pie&qpos;,
radius: &qpos;30%&qpos;,
center: [&qpos;50%&qpos;, &qpos;25%&qpos;],
label: {
formatter: &qpos;{b}: {@2012} ({d}%)&qpos;
},
encode: {
itemName: &qpos;product&qpos;,
value: &qpos;2012&qpos;,
tooltip: &qpos;2012&qpos;
}
}
]
};
myChart.on(&qpos;updateAxisPointer&qpos;, function (event) {
var xAxisInfo = event.axesInfo[0];
if (xAxisInfo) {
var dimension = xAxisInfo.value + 1;
myChart.setOption({
series: {
id: &qpos;pie&qpos;,
label: {
formatter: &qpos;{b}: {@[&qpos; + dimension + &qpos;]} ({d}%)&qpos;
},
encode: {
value: dimension,
tooltip: dimension
}
}
});
}
});
myChart.setOption(option);
});
尝试一下 »